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Brownian bugs and superprocesses

W.R. Young

Scripps Institution of Oceanography, University of California at San Diego, La Jolla 92093-0213

Abstract. Advection-diffusion-reaction (ADR) models link physical oceanog-
raphy and biological oceanography. These models, which describe biology
using continuous concentration fields, usually neglect individual-scale fluctu-
ations. I describe a stochastic individual-based model, called the Brownian
bug process, which illustrates some of the surprising issues associated with
the neglect of fluctuations by ADR descriptions. The Brownian bug model
is an ensemble of random walkers which suffer birth and death at constant
mean rates. (Probabilists will recognize the Brownian bug model as the
simplest example of a "superprocess.") Binary division puts two bugs (parent
and progeny) at the same position and the accumulation of these small-scale
density fluctuations can produce palpable nonuniformities on large scales.
In other words, provided that the diffusion is not too strong relative to the
reproduction rate, a spatially homogeneous initial condition spontaneously
develops patches and voids. The wavenumber signature of these reproductive
pair correlations is that the spectrum of density fluctuations remains white
but rises linearly with time. Diffusion opposes this reproductive forcing, most
effectively at large wavenumbers, so that a red spectrum develops.

1. Introduction approximation is derived and its limitations are better
understood. The 1997 compilation edited by Tilman

Individuals are the fundamental unit of ecology but and Kareiva gives a good overview of both these en-
it is not feasible to model ecological processes by track- deavours. In this review we will admire some scenery
ing single organisms. Instead, ecologists often em- on the climb-up to the ADR approximation by describ-
ploy advection-diffusion-reaction (ADR) approximations ing a maximally simplified model- the Brownian bug
which describe biology using the 'concentration' C(x, t) process.
(e.g.,Flierl et al. 1999). The concentration is defined Ocean ecology is a natural setting for ADR descrip-
via a sample area' dA surrounding any x at time t: tions because the spatial domain is large and the pop-

C(x, t) dA = expected number of organisms in dA. ulations of some species are enormous. Population size

(1) matters because C in (1) is an average or expectation.

The dimensions of dA are such that the strong nonuni- The actual number of organisms in dA, say N, is a ran-

formities characteristic of scales comparable to that of dom variable and using the definition in (1) NV = CdA.

an individual are greatly reduced by averaging. The difference N' = N - N is a fluctuation. Deter-

Ecological ADR models originated with papers by ministic ADR equations ignore these fluctuations. The

Fisher (1937), Kolmogorov et at. (1937) and Skellam naive justification for discarding fluctuations is that N

(1951). These authors independently proposed is a Poisson random variable (e.g., Durrett and Levin
1994) so that

Ct = -yC - AC 2 + DV 2C (2) N' 1S~ <<1 (3)
as a model for the growth, saturation and dispersion of

a population. This chapter of theoretical ecology is ei- Thus a deterministic description like (2) may be useful
for copepods, but not for whales.

ther a slide down from this summitt, as the ADR model
is applied to specific cases, or an ascent as the ADR In oceanography, ADR models are a main line of com-

munication between physicists and biologists. Physical
1In this note I will work in two-dimensions so that in (1) I am oceanographers put the A into the ADR equation (2) by

using a control area rather than a control volume, adding the term u- VC to the left hand side. The ve-
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a probabilist and the references in his article provide
an entry into the extensive and very mathematical lit-

1 .erature on superprocesses. A Google search on "super-
process" gives about 250 hits, most of which are on the
homepages of mathematicians. Table stakes in the su-
perprocess community are an understanding of measure

0.5: theory and branching processes-most oceanographers
can't ante.

Another closely related class of problems is diffusion-

0 limited reactions, e.g., see the review by Mattis and
0 0.5 1 Glasser (1998), which emphasizes the utility of quan-

tum field theory in these problems. There seems to
1 be little communication between physicists interested

in diffusion-limited reactions and probabilists studying
superprocesses.

0.5 Ecologists and oceanographers will not find it easy to
understand the review articles written by either of these
communities. This review, which is intended for my
oceanographic colleagues, might then be titled "Super-

0 0.5 1 processes for pedestrians, with no quantum field theory
and no measure theory."

" 2. Brownian bug simulations
0.5 ,, . , ,The Brownian bug process is an ensemble of random

walkers (idealized as points) milling around in continu-
* "•. "ous time and space and simultaneously reproducing and

. .r " •dying at constant mean rates. Reproduction is random
0 " 1 in time and occurs via binary division, so that parent

0 0.5 1and progeny are at the same point for just an instant
before their independent random walks start to produce
V/t separation. Death is also random and dead bugs
are removed from the ensemble. The addition of advec-

Figure 1. A Brownian bug simulation using A = 0.001, tion to this scenario (Young 2001) results in the simplest
p = q = 1/4, No = 4000, and U = 0 (no advection). The model of a planktonic species reproducing and dying in
position of each bug is plotted as a point in the unit square. a turbulent fluid.
The top panel shows the initial condition, the middle panel To simulate the continuous process described above
is after 10 cycles and the bottom after 100 cycles. o simute one mus p sscr ibed abov-on a computer one must discretize. There are sev-

eral ways of doing this, and I describe in the appendix
an individual-based Monte Carlo procedure which pro-

locity u(x, t) is supplied by some physical model. (For duces Figure 1. The top panel shows the homogeneous
example, see the paper by Kelvin Richards in these pro- initial condition and the middle and bottom panels the
ceedings.) Physicists find this type of model appealing results after 10 and 100 cycles of birth, death and dif-
because the mathematical structure is familiar, and be- fusion. Patches of bugs spontaneously form out of the
cause it is easy to plug biology into existing ocean mod- spatially uniform initial conditions.
els. This is also my excuse for discussing these issues in Failure of deterministic ADR. The ADR ap-
a meeting devoted to oceanographic stirring and mix- proximation of the simulation in Figure 1 is simply
ing.

When I described the Brownian bug process in my Ct = DV 2 C + (A -_ I)C, (4)
presentation at the 2001 'Aha Huliko'a meeting, Mel
Briscoe pointed out that the same model had been in- where D is the diffusivity, A is birth rate, and 1L the
dependently presented at the 1997 'Aha Huliko'a meet- death rate. (For the relation between D, A, and 1L and
ing by Robert Adler and identified as a superprocess. the parameters in the simulation see the appendix.) But
Adler approaches this subject from the perspective of in Figure 1 birth and death are equiprobable, A = •,
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and consequently (4) collapses to the diffusion equa- 15

tion. Thus, with the initial condition C(x, 0) = No/L 2, A= 0, 212, 2"' ,..., 2.7

the solution of the ADR description is C(x, t) = No/L 2.

Uniform concentration is not a good characterization of
Figure 1 and we conclude that the ADR approximation 1= 2_12

fails to describe the Brownian bug process.
A stochastic ADR equation. Although deter-

minstic ADR fails, there is a stochastic partial differen- A=

tial equation model which does capture the fluctuations
exhibited by the individual-based model. This stochas- 0.5 A= 2°T

tic equation is something like A= 2.' .

Ct = DV 2C + V/-Cw(x,t) (5) 2-'- 1

where w is a white Gaussian noise. The v1U in (5) 0 1-
occurs because in the control volume d the stochastic 0 100 200 00 o 0 0gention 700 8 900 10

imbalance between births and deaths is proportional to
v/. I qualified the introduction of (5) with "something Figure 2. Results of 7 simulations each with No 218
like" because mathematicians (e.g., Adler 1997) tell us bugs at t = 0. The unit square is divided into a lattice

that (5) makes sense only in one dimension, d = 1, but of 32 x 32 boxes (i.e., p = 5) and a(5, t) defined in (10) is
not when d > 2: in that case the concentration C(x, t) computed. The parameters in section 5 are p = q = 1/4
cannot be defined. I do not fully understand this point, and the step-length of the random walk, A, is varied as

In any event, Adler proceeds to introduce an integrated indicated. When the diffusion is strong a remains close

version of (5) which he claims is sensible even in d > 2. to -its initial Poisson value, a(5, 0) z 1/16. The dotted

We press on... curve is `GW = \/(1 + 2pt)/n,, which is computed using

Density fluctuations. The spatial clumping in the Galton-Watson solution in (18) and (19) below.

Figure 1 occurs because birth is always next to a living
bug, while death can occur anywhere. Alternatively, in There are 22P boxes so that the expected number of
some regions because of bad luck there is local extinc- bugs per box is
tion of the bug population. Diffusion from the surviving np _= 2-2PNo. (8)
centers of population is not fast enough to recolonize
the voids. This suggests that to produce patches the The occupation number of box b is the fluctuating quan-
diffusion D must be weak relative to the growth rate tity
A = y. We can identify the nondimensional parameter flb(t) M the number of bugs in box b at t, (9)
that controls this transition by noting that the initial
separation distance between bugs (the "specific" length) where b = 1,..., 22P indexes the boxes. To measure the
is 4, = L/vINo6. On the other hand, using the diffusivity size of fluctuations in nb relative to the expected value
D and the growth rate A, we can define a "reproduc- np we use the ratio of the RMS value of n(b, t) to np:
tive" length er =_?V-- , which measures the separa-
tion that develops between parent and progeny before 2

2
p

there is another reproductive event. We expect that O(p, t) E [n(b, t) - np]2/np. (10)
patchiness will be strong if the nondimensional number b=1

f4 = A If a(p, t) < 1 then n(b, t) is fluctuating weakly around

VN D, the expected value np.

is large. If the ratio es/er is small then density fluc- Figure 2 shows a(p, t) for a set of simulations with
aios should bft ertios is smallbecause the diffusion willc- various diffusivities and p = 5. The a(p, 0) is small be-

tuations should be small because the diffusion will be cause the box size tp = 1/32 is much greater than the
effective at mixing a family into the background of un- specific length, t, = 1/512. If the diffusivity is strong
related, and therefore uncorrelated, bugs. enough (for example, A > 2-8 in Figure 2) then o(p, t)

To illustrate these considerations, the L x L square is experiences mild growth but a(p, oo) < 1. In this case
divided, like a chessboard, into smaller squares ("boxes"), the diffusivity is arresting reproductively driven fluctu-
each of size ations. On the other hand, if the diffusion is small then

ep = 2-PL. (7) the growth of a proceeds till a(p, oo) > 0(1), which
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indicates large fluctuations in the density defined using The evolution of the other probabilities with k > 1 is
the box-scale ip. In particular, if there is no diffusion obtained from the hierarchy of differential equations
(A = 0) then one can show using the Galton-Watson
solution in (18) and (19) that u(p, t) z V/(1 + 2,t)/np. 15 k = A(k - 1)pk-1 - (A + IL)kpk + !(k + 1)pk+l. (13)
Notice that by decreasing the diffusivity we are increas-
ing the nondimensional parameter in (6). The term -(A + u)kpk on the right hand side of (13)

It would be useful to be able to give a scaling law for appears because a family of k bugs might make a tran-

the saturated value, u(p, oc), in terms of D, g, ep and sition to k + 1 bugs if any of its k members repro-

the other external parameters. I have not been able to duce (probability per time Ak) or make a transition to

achieve this. k - I bugs if any of the k members die (probability per
time jik). Analogous reasoning is used to deduce the
other terms containing k - 1 and k + 1 on the right

3. Galton-Watsonology hand side of (12).

The Brownian bug model combines two classical Mean and variance. From (12) and (13) one can

stochastic processes: Brownian motion and a Galton- show using the definition (11) that I = 1 and

Watson branching process. Brownian motion is familiar
to most oceanographers, but the Galton-Watson pro- d = (A- u)k. (14)
cess is not. This section summarizes some basic prop- dt

erties of Galton-Watson process. This result establishes the connection between the Gal-

Suppose that we switch off the motion of the bugs, ton-Watson process and the ADR equation (3): both
i.e., we set the step length of the random walk to zero. k and C are expectations defined by ensemble averages
In this case each bug founds a family which sits at the and A - , is the growth rate of the expected population.
initial spatial location. Newly born bugs pile up and In fact, if we start with No bugs, each of which is a
build a tower on top of their ancestors. The towers go family with one member, then because the evolution is
up and down as bugs are born and die. Towers can dis- independent f CdA = Nok.
appear forever (extinction) if a run of bad luck wipes The statistic k contains no information concerning
out the family. The statistics of these families, particu- the fluctuations in population. That is, at times t > 0
larly the probability of extinction, were studied by Gal- some families are extinct, while others are very large. A
ton and Watson in the nineteenth century (see Harris, coarse description of these fluctuations is provided by
1963, and chapter XVII of Feller, 1968). In this review the variance k2 _ k2, or better by the ratio
we closely follow Feller's continuous-time formulation of
the Galton-Watson process. =V k2 lk

The fundamantal variables of the Galton-Watson V

process are the probabilities which, like (3), compares the fluctuations to the mean.

Pk(t) = the probability that there are k bugs at t. Assiduous summation of (12) and (13) shows that

We study the proliferation of a family descended from 2(A - M)k2 + (A + p)k. (16)
a single urbug using the initial condition Pi (0) = 1 and dt
A(0) =0 if k #1. The probability that a family is If the death rate balances the birth rate, so that A = p
extinct at t is po(t). Given pk(t), one calculates the and k = 1, then the solution of (16) is
average of a function of k according to the definition

SP=1+2jt, (A =I). (17)
1(k, t) E- f (k, t)Pk (t). (11)

k=O In this case v = 2vp, indicating that the system is
dominated by fluctuations as t --+ oo.

Normalization of probabilities requires 1 - 1 and the The special case A = y in (17) is the critical point
mean population of a family is k(t). of the branching process. If -y - A - ju > 0 then

The family becomes extinct when a family with one k - exp(,yt) -+ oo and v - exp(--yt/2) --+ 0. On
surviving member suffers a death; accordingly the prob- the other hand, if -y < 0 then v - exp(--yt/2) -+ oo.
ability of extinction Po increases like The conclusion is that the system is dominated by fluc-

tuations if the growth rate -y is less than or equal to

P0 = ILP- (12) zero.
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A solution with A = /s. The variance is only a 4. Spectral dynamics
rough guide to behaviour of fluctuations. A much more
informative result is provided by an explicit solution of We began section 3 by imagining that the bugs were

(12) and (13) which is obtained using the generating immobile so that the surviving families formed towers

function method (Feller 1968): on top of the urbug. We then ignored the spatial aspects
of the model, and focussed simply on the statistics of the

W= At (18) bug population. Now let us return to the spatial domain
( 1 At and study the spectrum of concentration fluctuations.

For the moment, we continue to assume that the bugs
and if k > 1: are immobile (D = 0). The discussion surrounding

(20) through (22) shows that the height of a typical
= (At),-' (19) family tower grows like 1 +yht and the average sep-

pk(t) = (1 + 1.t)k+l (9 aration between towers grows like f/,V j .÷yt, where

4 = L/vrN/o. We can write the microscopic density of
At large times, At > 1, see that most families are ex- bugs in a single realization of the process as
tinct, po(t) -+ 1. That is, at large times the most prob- F

able number of members in any given family is zero - p(x t) nf 6(x - xf), (23)
in fact extinction is certain. On the other hand k =1
so that the expected number of members in a family f1=

(counting extinct families as having zero members) is where F(t) is the number of surviving families, nf is the
always constant. number of members in family f and xf is the location

To reconcile the extinction of most families with a of the family. Notice that the concentration is
constant expected population, we make a distinction
between surviving families (meaning a family with at C = (p) = No/L 2 , (24)
least one member) and extinct families. Suppose that
we start with a large number No > 1 of individuals, where the () denotes an ensemble average over the ran-

each of which founds a family. At t the number of sur- doam locations 2 xf and an average over the nf's using
viving families is a random variable, F(t). The expected (21). The average C = (p) is trivial - just like k in the
number of surviving families is F = (1 -po)No, or using previous section. To learn something about the fluctu-
(18) ations we must study quadratic quantities such as the

No spectrum.
F(t) = 1 + At (20) Continuing with the D = 0 assumption, we now

make a standard calculation of the spectrum by ensem-
Let the random variable n be the number of individuals ble averaging the density in (23). The Fourier series
in a surviving family. From (18) and (19), the proba- representation of (23) is
bility distribution of n, conditioned on the survival of a
family, is p(x, t) = L r Pk exp (ik- x) , (25)

k

p ( t)= - ' (n = 1, 2-.). (21) where

pk Znf exp (-ik-xf). (26)
and consequently f=1

The spectrum is related to
fi(t) =At+ 1, n2 =(2pt + 1)(At + 1). (22)

F

Thus, the number of surviving families decreases like (PkPý) n(fZ + 2Z Z nfnfek(xf-x9)), (27)
t-', while the membership of a surviving family grows f=1 f'>f
like t1 to keep the total population fixed.

where the () is an ensemble average over both the ran-
These remarks illustrate Galton and Watson's con- dom and uncorrelated positions xf of the surviving fam-

clusion that the "observed diminution of surnames among ilies and over the random variable hi. Because there are
families whose history we can trace, is not a sign of their
diminished fertility." Instead the extinction of most 2 The family locations xf are uniformly distributed in the do-
families, and the apparent fecundity of a few exceptions, main. Thus (J(x-xf)) = L- 2 and if k 6 0 then (exp(ik-xf))

is a result of "the ordinary law of chances." 0.
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term is the diffusive sink of variance which ultimately
25 : balances the source.

The solution of (30)
20- 1 e-2Dk2t +1, (31)

S(k, t)Dk

15 exhibits a k-2 range at high wavenumbers. (If we
S(k) W=1OO isotropize by using 27rkS(k) then this is a k-1 spec-

10 trum.) Figure 3 shows good comparison of (31) with a
spectrum estimated from a simulation.

5- W=0 5. Conclusions

In this note we have studied a model which focuses
50 100 150 200 250 attention on the role of fluctuations in the spatial de-

cycles velopment of populations. It is remarkable that Euler,
Navier and Stokes formulated the basic equations of

Figure 3. Comparison of the analytic prediction (31) (the fluid mechanics before the reality of atoms was estab-

smooth solid curve) with the results of simulation. We show lid This hisory te that fortms prses

estimated spectra (the three dotted curves) from the simula- lished. This history indicates that for most purposes

tion at t = 1, t = 10 and t = 100; the comparison with (31) atomic fluctuations are unimportant in fluid mechanics.
is made only at t = 100. The simulation used No = 10s bugs The Brownian bug model suggests that the problem of

with A = 2-11 and p = q = 7/64. The spectra are estiamted biological fluctuations is more severe, and that events
by azimuthally averaging in the wavenumber plane. on microscopic scales can impact macroscopic observa-

tions. Indeed, the source term 2ju on the right hand
side of (30) is due to reproduction and has no analog inno correlations between the positions of the families the fluid mechanics.

final term, involving the double sum with f :? f' van-

ishes. Using P from (20), and 7
2 from (22), shows that Appendix: A recipe for simulations

the remaining term on the right hand side of (27) is

(PkPk*) = A? = No0(I + 2pt) (28) The initial condition, t = 0, is prepared with a large
number No of bugs, strewn randomly into an L x L

This simple calculation indicates that the spatial sig- square domain. The initial condition is a Poisson point

nal of a diffusionless Galton-Watson process is a white process in which there are no correlations between the

spectrum which rises at a constant rate. positions of the bugs.

How is the conclusion above affected by diffusion? The simulation is advanced through time in incre-

With D # 0 the members of a family move as indepen- ments of a "cycle" of duration r. Each cycle consists

dent random walkers and the family towers blur into of two steps: (a) random birth and death; (b) Brow-

spreading clouds of bugs. We could write down a micro- nian motion. In step (a) each bug reproduces by bi-

scopic density, analogous to (23), in which the position nary fission (probability p) or dies (probability q) or

of each individual bug is represented with a J-function. remains unchanged (probability 1 - p - q). When a

But then the calculation founders at (27) because the () lucky bug divides the offspring is placed on top of the

no longer kills the off-diagonal terms: there are correla- parent. In step (b), bug k is displaced to a new position

tions between the positions of bugs which belong to the Xk (t + r) = xk (t) + Jxk (t). The components of JXk are

same family. Instead we can argue heuristically that independent and identically distributed Gaussian ran-

the evolution of the spectrum, defined as dom variables, each with RMS value A (i.e., Brownian
motion with the diffusivity D = A 2/2-r). These inde-

S(k, t) No16PkP•), (29) pendent displacements separate the coincident parent-
progeny pairs created by step (a).

is given by In principle, one can approach the continuous limit

St = 2pt - 2Dk2S, S(k, 0) = 1, (30) by taking r -- 0 while holding the parameters A - p/,

L M q/r, and D = A 2 /2r- fixed.

where k - kvik-.k. The first term on the right hand We can also use po(t) in (18) to calculate the prob-
side of (30) is a source of variance which produces the ability that an initial population of No bugs becomes
uniform rise of the spectral level in (28). The the final extinct at time t: each bug produces a family which
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evolves independently of the other families, so that the Flierl, G., D. Griinbaum, S. Levin, and D. Olson, From indi-
probability that all No families are extinct at t is viduals to aggregations: the interplay between behaviour

NO and physics. J. Theor. Biol., 196, 397-454, 1999.
Pext =P :Z: exp( xtft), (Al) Harris, T.E., The Theory of Branching Processes, Springer-

where the extinction time-scale is Text = No0//. (The Verlag, Berlin, 1963.

exponential approximation in (Al) assumes that No is Kolmogorov, A., I. Petrovsky, and H. Piscunov, Study of the

large and t/Text is of order unity.) In simulations we diffusion equation with growth of the quantity of matter

avoid extinction by making No much larger than the and its application to a biology problem. Originally pub-
lished in Bulletin de l'universitg d'etat & Moscou Sgrie

number of generations. The suppression of extinction lse nBlei elnvri6d6a iMso ~i
internationale, section A, 1, 1937. For an english trans-

is a consequence of approaching the "thermodynamic lation, see Dynamics of Curved Fronts edited by P. Pelc6.
limit" in which No -+ co with No/L 2 fixed. Academic Press, San Diego, 1988.
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